

National Mock Exams 2024

POWERED BY ExamSimulator

BTEC Level 3 Sport and Exercise Science Unit 2 Functional Anatomy

Please read before distributing to students.

Purpose of this document

The questions contained within this document and the associated mark scheme are based on the data analysis performed by The EverLearner Ltd. Please note the following:

- We believe this paper has a very strong association with the actual external exam in 2024 in relation to command terms, skills, A0 distribution, extended writing requirements and topics.
- However, this is categorically NOT a predicted paper. No one can accurately predict an exam paper and we make no claim to this end.
- It is vital that you only use this document internally in your school/college. Publishing the document online or sharing it in any other way is strictly prohibited as this will undermine the potentially educational experiences of students in other schools/colleges.
- Finally, please check the publication dates of the mark scheme and model answers for this paper as well as the associated revision session in May.

This paper contains:

- Questions in the format of the BTEC Level 3 Sport and Exercise Science Unit 2 Functional Anatomy exam
- Short-answer questions
- Extended writing

How should schools use these papers?

This paper has been constructed specifically for use as a mock exam but can be used less formally as a practice paper or model paper. The content and skills of the paper will be developed within the free-to-air revision sessions offered by James Simms on Wednesday 1st of May 2024 at 15:00.

All questions are available on ExamSimulator, where they can be practised multiple times in both online and printable format. ExamSimulator is a premium resource available via TheEverLearner.com and provides immediate diagnostics of student writing performance after every exam answer.

James Simms

Subject	Physical Education
Course	BTEC Level 3 Sport and Exercise Science: Unit 2 Functional Anatomy
Time allowed	1 hour 30 minutes

First name	
Last name	
Class	
Teacher	

LITIA	l 3 Sport and Exercise Science - Unit 2 Functional Anatomy - ock Exam Summer 2024
-------	--

	 This paper is marked out of 60 marks.
Guidance	 You have 90 minutes (plus additional time for those who have Exam Access Arrangements). Answer all questions. A calculator is permitted for this exam. This paper contains two 8-mark questions and one 14-mark question. Good luck.

1. Look at the image of the respiratory system. Identify the components labelled A, B and C.

A:	
C:	
	Marks: [3]
2. Describe the role of the internal intercostal muscles during expiration .	
	Marks: [3]
3. State one function of the tricuspid valve.	
The function is:	

Marks: [1]

4. State one function of the pulmonary artery.	
The function is:	
	Marks: [1]
5. Describe protraction of a joint.	
	Marks: [2]
6. State two types of movement at the hip when moving along the frontal	plane.
Movement 1:	
ı	Marks: [2]

7. Review the image of a squat.Explain the type of muscle contraction in the quadriceps when moving to positionB.

Type of contraction:	 	 	
Explanation:	 	 	
			Marks: [3]

8. Look at the image of the cardiac cycle. Identify the components labelled A and B.

4:	.:	 	 _
B:	:	 	

Marks: [2]

				Marks: [3
10. Review the tab	le. Identify A ar	nd B.		
	Lung	volumes during ex	kercise	
	Lung volume	Description	Response to exercise	
	Tidal volume	Amount of air inspired and expired per breath	А	
	Residual volume	В	Remains the same	
A: B:				
11. State one reaso	on why residua	l volume remai	ns constant du	ıring exercise.
11. State one reaso	on why residua	l volume remai	ns constant du	ıring exercise.

12. Protection is a function of the skeletal system. Explain why protection is necessary in rugby.

_	_	 	 	 	 	 _	 	_	 	 _	 	 -	 	 	_
	_												 		
_	_	 	 	 	 	 _	 	_	 	 _	 	 	 	 	_
_															
_															
		 		 	 	 _	 		 	 -	 	 	 	 	

Marks: [3]

13. Explain why type IIx **and** type IIa muscle fibres are recruited in a 400m sprint race.

Marks: [4]

14. Analyse how the sliding filament theory accounts for muscle contraction.

Sliding filament theory

_	_	_	 -	_	 	_	_	 -	-	-		 -	_			 	 		 	-	
_	_	_	 	_	 	_	_	 -	_	-	_	 	_	_		 	 		 		
_	_	_	 -	_	 	_	-	 -	-	_	_	 -	_			 	 	-	 	-	
_	_	_	-	_	 	_	_	 -	_	-	_	 -	_			 	 		 	-	
_	_	_	 -	_	 	_	_	 -	-	_	-	 -	_		-	 	 	-	 	-	
_	_	_	 -	_	 	_	_	 -	-	_	-	 -	_		-	 	 	-	 	-	
_	_	_	 -	_	 	_	_	 -	_	_	_	 -	_			 	 		 		
_	_	_	 	_	 	_	_	 _	_	_	_	 -	_			 	 		 		
_	_	_	 	_	 	_	_	 _	_	_	_	 -	_			 	 		 		
_	_	_	_	_	 	_	_	 -	_	_	_	 -	_	_		 	 		 	_	
_	_	_	_	_	 	_	_	 -	_	_	_	 -	_	_		 	 		 	_	
_	_	_	_	_	 	_	_	 -	_	_	_	 -	_			 	 		 	_	
_	_	_	_	_	 	_	_	 -	_	_	_	 -	_			 	 		 	_	
_	_	_	_	_	 	_	_	 -	_	_	_	 -	_			 	 		 	_	
_	_	_	_	_	 	_	_	 -	_	_	_	 -	_			 	 		 	_	
_	_	_	 	_	 	_	_	 _	_	_	_	 -	_			 	 		 		
_	_	_	_	_	 	_	_	 -	_	_	_	 -	_			 	 		 	_	
_	_	_	_	_	 	_	_	 -	_	_	_	 -	_			 	 		 	_	
_	_	_	_	_	 	_	_	 -	_	_	_	 -	_			 	 		 	_	
_	_	_	-	_	 	_	_	 -	_	_	_	 -	_	_		 	 		 		
_	_	_	 -	_	 	_	_	 -	_	_	_	 -	_			 	 		 	_	
_	_	_	-	_	 	_	_	 -	_	_	_	 -	_	_		 	 		 		
_	_	_	-	_	 	_	_	 -	_	_	_	 -	_	_		 	 		 		
_	_	_	-	_	 	_	_	 -	_	_	_	 -	_	_		 	 		 		
_	_	_	_	_	 	_	_	 -	_	_	_	 -	_	_		 	 		 	_	
_	_	_	_	_	 	_	_	 -	_	_	_	 -	_	_		 	 		 	_	
_	_	_	 	_	 	_	_	 -	_	_	_	 -	_			 	 		 		
_	_	_	 	_	 	_	_	 	_	_	_	 	_			 	 		 		
_	_	_	 	_	 	_	_	 	_	_	_	 	_			 	 		 		
		_																			

Marks: [8]

15. Review the image of an athlete completing an overhead pass. Analyse how the axial and appendicular **skeletons** allow the movement necessary at the:

- -Elbows
- -Wrists
- -Right ankle to move from preparation to execution

Elbows:			 _
	 	 	 _
Wrists:		 	 _
Right ankle: _			_
			 _

Marks: [8]

16. Review the image of a deadlift.

Analyse the required movement necessary at the:

- -Trunk
- -Hips
- -Knees for the athlete to move from preparation to execution

Trunk:	 	 	 	
Hips:	 		 	
Knees:	 	 	 	